가공 부품은 3 일 만에 배송되며 오늘 금속 및 플라스틱 부품을 주문하십시오.연락하다

3D 프린팅 유형은 무엇입니까?

blog avatar

작성자가 작성했습니다

GloriaJS

게시
Apr 24 2025
  • 3D 프린팅

우리를 따르십시오

what-are-the-types-of-3d-printing

3D 인쇄 기술은 디지털 제조로 생산 논리를 재구성하고 있습니다. 디자인과 제작 사이의 링크, 3D 인쇄 모델은 유효한 도구가 생성됩니다. JS는 FDM, SLA, SLS 및 Metal Printing Processes , 프로토 타입 개발에서 소규모 배치 생산에 이르기까지 모든 것을 지원하고 혁신을 돕습니다.

3D 프린팅의 디지털 제조 너비 =

3D 프린팅 기술의 유형은 무엇입니까?

1. 1 증착 모델링 (fdm)

  • 원리 : 층 압출에 의해 플라스틱 섬유 층을 가열하여 용융 증착 몰딩.
  • 특징 : 저비용, 빠른 프로토 타입 , JS의 효율적인 생산 과정
  • > > > > > > > > > > > > > > > > > >.

2.stereolithography (SLA)

  • 원리 : UV 경화 기술, 액체 수지는 UV 경화에 의해 형성됩니다.
  • 기능 : 높은 정확도 (± 0.05mm), 매끄러운 표면, 복잡한 구조에 적합하며 JS 정밀 제조 요구 사항을 충족합니다.
  • .

3. data-len = "32"data-v-7b79c893 = "" "> 선택적 레이저 소결 (SLS)

  • 작동 방법 : 레이저 소결 나일론 파우더는지지 구조가 필요하지 않습니다.
  • 기능 : 고강도, 기능적 부품에 적합한 JS의 금속/복합 재료 호환성은 응용 범위를 확장 할 수 있습니다.
  • .

< "> mjf)

  • 작동 방법 : inkjet 파우더 베드 퓨전, 용융 및 적외선 가열을 통한 층에 의한 나일론 분말 층을 굳히는 방법.
  • .
  • 특징 : 고속 (SLS보다 3 배 더 빠른 3 배), 높은 세부 사항 (± 0.08mm), 빠른 생산 및 비용 최적화를위한 JS.

5. data-pos = "2"data-len = "30"data-v-7b79c893 = "" "> 선택적 레이저 용융 (SLM)

  • 작동 방법 : 고급 제조를위한 금속 파우더 레이저 용융.
  • 기능 : 높은 정확도 (± 0.02mm), 고온 저항, JS의 정밀 가공 기술은 제품 품질을 더욱 향상시킬 수 있습니다.
  • >.

< "> 3D Printing의 비교 DATA-V-7B79C893 =" "" "" "" "" "" "" ""PAR DATA-V-7B79C893 = "" 기술

<테이블 스타일 = "Border-Collapse; Collapse; 너비 : 99.9046%; 테두리-width : 1px; 국경 색 : #000000; 높이 : 439.938px;" Border = "1"> width = : 30.4015%; "> 기술 유형 속도 비용 재료 유형 복잡성 처리 기능 JS Company의 관련 장점 fdm medium low PLA 및 ABS와 같은 플라스틱 ★★★ 효율적인 생산 공정 최적화 속도 sla 빠른 (dlp) 센터 감광성 수지 ★★★★ 높은 정밀 일치 JS ± 0.005mm 표준. sls medium 센터 Nylon, TPU 및 기타 분말. ★★★★ 금속/복합 응용 프로그램의 확장 지원. mjf 매우 빠른 Medium-High Nylon (PA12/PA11). ★★★★★ 빠른 전달을위한 배치 생산 효율 개선. slm slow Tall 금속 분말 (티타늄, 스테인리스 스틸). ★★★★★ 정밀 가공 기술은 부품의 높은 복잡성을 보장합니다.

FDM 인쇄층 두께가 강도에 미치는 영향은 무엇입니까?

<"> 강도

1. 층이 두꺼워 질수록 인터레이어 접착력이 약할수록>

층의 두꺼운 층, 더 밀도가 높은 구조

  • 0.05mm와 같은 작은 층 두께는 층 간의 간격을 줄여 표면이 더 매끄럽고 내부 구조를 더욱 균일하게 만듭니다. 약점, 따라서 충격 저항이 증가합니다.
  • js 사례 : 인쇄 중 <스팬 클래스 = "sentence"data-translateid = "59dae278e1d0d222c543269d4997239c"data-len = "0"219 "" "219" Data-V-7B79C893 = ""> 서비스 항공 우주 부품의 JS는 인쇄층의 두께를 제어하여 마이크로 미터 레벨을 제어하여 구성 요소가 항공 우주 강도 표준을 충족하도록합니다.

.

층 두께와 재료 특성 사이의 균형

1. 층층은 재료를 절약하지만 강도

  • 두꺼운 레이어는 빠르게 인쇄하여 소모품을 적게 사용하여 빠른 프로토 타이핑에 적합하지만 층간 결함으로 인해 강도가 부족할 수 있습니다. 예를 들어, ABS 플라스틱을 0.3mm 층 두께로 인쇄 할 때 인장 강도는 0.1mm 층 두께보다 15% -20% 낮을 수 있습니다.
  • 비용 최적화 : JS의 인쇄 서비스는 지능형 알고리즘을 에 사용하여 가장 경제적 인 계층 두께 솔루션을 자동으로 권장합니다 강도를 보장하면서 고객에게 재료 비용의 30% 이상을 절약합니다.

2. data-len = "55"data-v-7b79c893 = "" "> 얇은 레이어는 강도를 추가하지만 인쇄하는 데 시간이 더 걸리지 만

  • 얇은 층 인쇄는 강도를 향상시킬 수 있지만 인쇄 시간은 분명히 증가합니다. 0.3mm 층의 길이.
  • 인쇄 서비스 시간 보장 : JS는 산업용 멀티 노즐 프린터 클러스터를 사용하므로 초 약속의 레이어를 선택하더라도 약속 된 1-2 주 내에 배송 할 수 있습니다.
  • .

실제 애플리케이션에서의 두께 선택

1. 기능 부품 대 표시 부품

2. 재산 적응

  • PLA/ABS : 기존 층 두께는 0.1-0.3mm이며 얇은 층은 세부 성능을 향상시킬 수 있습니다.
  • 나일론/복합 재료 : 강인성을 향상시키기 위해 0.05-0.15mm 층 두께가 권장됩니다.
  • 인쇄 서비스 자료 라이브러리 : JS는 50+ 재료의 인쇄를 지원하며 각 재료는 최적의 강도 성능을 보장하기 위해 층 두께에 대해 테스트되었습니다.

FDM 인쇄 레이어 두께

SLA 인쇄 해상도를 결정하는 매개 변수는 무엇입니까?

"span Class ="Sentence " data-translateid = "67a9aa2de38208c3575fd6cdde054b37"data-pos = "0"data-len = "49"data-v-7b79c893 = ""> SLA 인쇄에 영향을 미치는 코어 파라미터 해상도

광원 유형 및 스펙 클 크기 유형

2. Data-TranslateId = "9C8D0C9D004D7EAA4D3D8DB94A4466E7"Data-POS = "3"Data-Len = "32"Data-V-7B79C893 = "" "> 스팬

  • 스캔 속도가 느리면 단위 영역 당 노출 에너지가 높을수록 치료가 깊어집니다. 스캔이 너무 빠르면 치료가 불완전 할 수 있습니다.
  • 최적화 방향 : 모델 복잡성을 기반으로 한 스캔 속도의 동적 조정 (예 : 디테일 스캔 속도 감소).
  • .

< data-translateid = "7B77520B706CA48488BA88AC33DFB23B"data-pos = "3"data-len = "35"data-v-7b79c893 = ""> 층 두께 (z-Axis resolution)

Resin Properties

  • 점도 : 낮은 비수성 수지는 유동성이 우수하고 작은 구조를 채울 수 있지만 경화 속도 균형을 유지해야합니다.
  • .
  • 감광성 : 높은 광 광성 감각 수지는 빛에 민감하고 낮은 에너지에서 고형화 될 수있어 열 변형의 위험을 줄입니다.

< 모델 Geometry

  • 돌출 된 구조 및 구멍에는 추가 지원 또는 계층화 된 전략 조정이 필요하며, 이는 로컬 해상도를 희생 할 수 있습니다.
  • >.
  • 최적화 방법 : 모델 슬라이싱 소프트웨어에 의해 적응 지원 구조가 생성됩니다.

매개 변수 비교 및 ​​최적화 제안 테이블

<테이블 스타일 = "Border-Collapse; Collapse; 너비 : 100.191%; 경계-넓이 : 1px; 경계 색상 : #000000; 높이 : 434.547px;" Border = "1"> 매개 변수 해상도에 대한 영향 최적화 방향 전형적인 값 광원 유형 Laser> DLP (레이저는 동일한 해상도에서 정밀도가 높습니다). 정밀 모델은 레이저를 선택하고 대량 생산을 위해 DLP를 선택하십시오. . 레이저 : 50μm / dlp : 100μm < / td> 스팟 크기 지점이 작을수록 세부 사항이 명확 해집니다. 고정밀 레이저 헤드 또는 4K DLP 프로젝션 사용. 50μm (레이저) 스캔 속도 속도가 느리면 경화가 더 완료됩니다. . 미세한 영역 (예 : 0.1mm/s)에서 속도를 줄이고 넓은 지역에서 속도를 높이십시오. 50-200mm/s 레이어 두께 층 두께는 절반으로 줄어들고 z 축 분해능이 4 배 증가합니다. 정밀 부품에는 얇은 층 (25μm)과 속도 증가를 위해 두꺼운 층 (100μm)을 사용합니다. 50μm (표준) 수지 점도 낮은 점도는 유동성과 세부 사항 충전 능력을 향상시킵니다. . Use special resins (e.g. transparent resins with viscosity ≤1500cP). 500-2000cP Model overhang angle If the angle is too small, dense support is required, and blocking the light affects the curing. Avoid <45° overhangs or add auxiliary supports in the design. ≥60° (unsupported)

By properly selecting parameter combinations, the 3D printing model can achieve precise manufacturing from concept verification to functional prototypes.

Which printing technology is more stable in high temperature environments?

1.3D printing of metallic materials (high temperature environment preferred)

SLM/DMLS (selective laser melting/sintering)

  • Heat resistance: Materials such as titanium alloy (Ti6Al4V, melting point 1668°C) and nickel-based superalloys (Inconel 718, melting point 1390°C) can withstand high temperatures for longer than 600° C.
  • Stability: The laser melts the metal powder layer by layer, the tissue is compact, and the resistance to creep is strong.
  • 3D printing service support: Printing shops reduce residual stress and prevent thermal deformation by optimizing laser power, scanning speed and cooling strategies.

2.Ceramic 3D printing technology (ultra-high temperature resistance potential)

SLA/DLP (light-curing ceramics)

  • Heat resistance: Alumina (Al2O3, melting point 2050°C) and zirconium oxide (ZrO2, melting point 2700°C) ceramics can withstand temperatures above 1500°C.
  • Stability: Ceramic blanks require high temperature sintering (above 1600°C), density is close to theoretical values, and thermal expansion coefficient low.
  • 3D Printing Service Support: Printers provide a complete range of services from printing to degreasing and sintering to ensure that ceramic parts are fissure-free and size stable.

3.High-Performance engineering plastic 3D Printing

FDM (Molten deposition modeling)

  • Heat resistant materials: PEEK (melting point 343°C), ULTEM (melting point 335°C) and other special engineering plastics.
  • Stability: PEEK retains strength after prolonged use at 260°C, but printing temperature (280-320°C) and cooling conditions need to be optimized.
  • 3D printing service support: Printing shops use industrial-grade FDM equipment (such as Stratasys Fortus series) with thermostats to reduce warping.

SLS (selective laser sintering)

  • Heat resistance: Nylon + fiberglass/carbon fiber composites with a short-term temperature resistance of up to 180°C.
  • Stability: Laser sintering is compact, but oxidizes easily at high temperature for a long time and requires surface coating protection.
  • 3D printing service support: Printing shops provide material modification services (such as adding flame retardants) to improve temperature resistance.
  • Advantages: Plastic 3D printing is low cost, short cycle time, suitable for medium and high temperature environments (e.g. automobile intake manifolds, electronic radiator, etc.).

Technology selection recommendations for high temperature scenarios​​

<테이블 스타일 = "Border-Collapse : 붕괴; 너비 : 100%; 경계 넓음 : 1px; 경계 색상 : #000000;" border="1"> Scene temperature Recommended Technology 핵심 장점 Key capabilities of printing shops 600-1000℃ Metal SLM/DMLS. High strength and creep resistance. Laser equipment, vacuum environment, heat treatment. 1000-1500℃ Ceramic SLA/DLP. Ultra high temperature resistance and corrosion resistance. Specialized ceramic materials and high-temperature sintering process. 200-600℃ PEEK FDM, Nylon SLS. Economy and lightweight. Industrial grade equipment and material modification.

Printing Technology in High Temperature Environments

How to achieve layered stacking in 3D ink jet printing?

Ink jet printing technology is by layering liquid material on top of each other to create three-dimensional objects. Its core lies in high high-precision jetting and curing 제어. Specific implementation steps and key technologies are as 다음 :

1.Preparation of materials: Adaptation of liquid media

  • Photosensitive resin: The most commonly used material that requires fast curing and high viscosity stability.
  • Support material: Water-soluble or fusible material used to temporarily support complex structures.
  • Ink jet printing optimization: The injection accuracy of the nozzle (usually 20-100 microns in diameter, for example) needs to be adjusted by adjusting parameters such as viscosity of the material and surface tension.

2.Ink jet print head: Precision droplet injection

Piezoelectric drive or thermal foaming technology:

  • Piezoelectric ceramics: The piezoelectric ceramic deformed by voltage changes, and ink cavity are compressed to produce tiny droplets.
  • Thermal foaming: Local heating of ink to form bubbles, promote droplet spray.
  • Multi-nozzle collaboration: Industrial-grade inkjet print heads integrate hundreds of nozzles to achieve a single sweep over a large area.
  • Layered path planning: Software slices 3D models into 2D segments, and the inkjet head spray layers of material along the path.

3.Layer by layer stacking: droplet solidification molding

  • Photocuring (UV/LED):
    • After each layer of liquid resin is sprayed, solidify with UV light or LED light immediately to form a solid thin layer.
    • Accurate control: Light intensity and exposure time need to be matched to the solidification characteristics of the material (e.g. SLA/DLP technology).

4.Post-treatment: enhancement and surface optimization

  • Support structure removal: Dissolve or melt temporary support material.
  • Surface treatment: Grinding, sanding or chemical polishing to eliminate step effect.
  • Late-stage maintenance: Some materials require secondary curing to improve mechanical performance.

Ink jet printing achieves layered stacking

How to choose supporting materials for complex 3D printing models?

1.Structural adaptation principle​

Overhang structure (>45°):

  • PVA/HIPS: Soluble scaffold for water solubility or solvent removal.
  • Example: In 3D models printing of inclined bridges, PVA support can be removed by water solubility to prevent tool damage to detail.

Bridge structure (long span):

  • ABS/nylon support rods: High temperature resistant to breakage during printing (such as robotic arm model).
  • For example, HIPS support can withstand high temperatures when printing grids in 3D models printing to prevent breakage during printing.

2.Matching and separation of materials

Easy peel combination:

  • PLA+PVA: Low adhesion, smooth finish.
  • Example: The 3D models printing transparent resin model matched the PVA support and dissolved in water without residue.

Chemical dissolution combination:

ABS+HIPS: Lemonin is needed to dissolve the scaffold and is suitable for complex internal parts such as gear components.

3.Actual performance requirements

  • Heat Scenario: Ceramic/metal supports: high temperature resistant (e.g. titanium alloy printing) requiring mechanical peeling.
  • Shrinkage control: The material shrinkage rate of the supporting material is closer to that of the model material (e.g. PETG + PETG support).

4.Post-treatment efficiency

Quick removal:

Environmental Protection Plan: It is advisable to select biodegradable scaffolds (e.g. PBDE-based biodegradable materials) to reduce waste liquid treatment costs.

5.Printer adaptation

FDM equipment:

  • Co-Supported: PLA/PVA/HIPS, optimize separation effect, optimized separation by adjusting nozzle temperature.
  • Example: 3D models printing hollow spheres with HIPS support, acetone vapor smooth surface.

SLA/DLP equipment:

  • Supported by soluble resin, it was cured by ultraviolet light and then soaked and removed directly.
  • For example, when 3D models printing precision gears, resin supports retain microscopic detail.

Can JS achieve functionally graded components through multi material 3D printing?

1.Multi-material printing technology support

JS's 3D printing services include MJF and composite metal/ceramic printing technologies, which can switch different materials (e.g. metal-ceramic, carbide-polymer) during the same printing process to achieve continuous or segmented gradient changes in material composition.

2.Material compatibility and gradient design

Through JS's 3D printing services, customers can choose from a variety of material combinations, including metals, ceramics and composites, and freely design the microstructure of functional gradient components (such as abrasionresistant + substrate layer).

3.Process optimization and performance assurance

JS's industrial-grade equipment supports thickness control (±0.005mm) and temperature management to ensure uniform interface bonding strength and gradient transition across different materials and meet extreme working conditions such as high temperature and pressure.

4.Customized solutions

For areas such as aerospace and medical devices, JS's team can provide a full range of services, from material selection and gradient structure design to reprocessing, such as:

  • Aerospace engine parts: Titanium alloy substrate gradient structure + ceramic thermal barrier coating.
  • Orthopedic implants: Metal skeleton biomimetic design + bioactive ceramic coating.

Summary

As a disruptive technology, 3dprinting continues to drive change in manufacturing with its diverse process types (e.g. FDM, SLA, metal printing, etc.) and a wide range of application scenarios (from industrial manufacturing to medical innovation). Whether it is the efficient production of complex functionally gradient parts or the rapid iteration of custom models, 3D printing services demonstrate irreplaceable flexibility and economy. Technology service providers represented by JS have further lowered the technology threshold by integrating multi-material printing, precision process control and industry-wide chain support, allowing businesses to focus on design innovation and value creation.

Disclaimer

The content on this page is for general reference only. JS Series makes no express or implied warranties regarding the accuracy, timeliness, or applicability of the information provided. Users should not assume that the product specifications, technical parameters, performance indicators, or quality commitments of third-party suppliers are completely consistent with the content displayed on this platform. The specific design feature, material standards, and process requirements of the product should be based on the actual order agreement. It is recommended that the purchaser proactively request a formal quotation and verify product details before the transaction. For further confirmation, please contact our customer service team for professional support.

JS Team

JS is an industry leading provider of customized manufacturing services, dedicated to providing customers with high-precision and high-efficiency one-stop manufacturing solutions. With over 20 years of industry experience, we have successfully provided professional CNC machining, sheet metal manufacturing, 3D printing, injection molding, metal stamping and other services to more than 5000 enterprises, covering multiple fields such as aerospace, medical, automotive, electronics, etc.

We have a modern factory certified with ISO 9001:2015, equipped with over 100 advanced five axis machining centers to ensure that every product meets the highest quality standards. Our service network covers over 150 countries worldwide, providing 24-hour rapid response for both small-scale trial production and large-scale production, ensuring efficient progress of your project.

Choosing JS Team means choosing manufacturing partners with excellent quality, precise delivery, and trustworthiness.
For more information, please visit the official website: jsrpm.com

FAQs

1.Does SLS printing require support?

SLS printing usually does not require support. The unsintered nylon powder will naturally envelop the model to avoid collapsing in the air. Only a few complex designs require a small amount of ancillary support, which greatly simplifies the reprocessing process.

2.Which technology is suitable for printing transparent parts?

SLA technology is suitable for printing transparent parts. It uses photosensitive resin that hardens under UV 빛. The surface is smooth and transparent. Suitable for making high precision transparent model (such as optical parts).

3.What does the layer thickness of FDM affect?

The thickness of FDM layer influences surface smoothness, printing time and printing strength. The thicker the layer, the more visible the pattern, the faster the printing, but the intensity may be reduced.

4.How big a part can 3D printing make?

Industrial-grade 3D-printing devices can manufacture large parts of meters (such as aerospace parts), while desktop devices are usually limited to a few dozen centimeters and are suitable for small models or prototypes.

Resources

3D printing filament

Stereolithography

Selective laser sintering

blog avatar

GloriaJS

빠른 프로토 타이핑 및 빠른 제조 전문가

CNC 가공, 3D 프린팅, 우레탄 주조, 빠른 툴링, 사출 성형, 금속 주물, 판금 및 압출을 전문으로합니다.

꼬리표:

  • 3D 프린팅
공유하십시오

Criticism

0 comments
    Click to expand more

    Featured Blogs

    empty image
    No data
    longsheng customer
    연락하다