As peças usinadas são enviadas em 3 dias, peça suas peças de metal e plástico hoje.Contato

Quais são os tipos de impressão 3D?

blog avatar

Escrito por

GloriaJS

Publicado
Apr 24 2025
  • Impressão 3D

Siga -nos

what-are-the-types-of-3d-printing
Em data-translateid = "05F03D86982B0842DD32B45BF5CCBBC2" Data-pos = "0" Data-Len = "221" Data-V-7b79c893 = ""> Span-V-7B79C893 = ""> A tecnologia de impressão 3D está remodelando a lógica da produção com fabricação digital. da Rapid Prototying of Industrial SkinElegts e Custom Skingons for Medicina para o RAPON RAPON, para o RAPOTEILTING, para o Rapid, para o RAPON, para o Rapid, para o Rapid, para o RAPON, para o Rapid, para o Rapid, para o Rapid, para o RAPON, para o Rapid, para o Rapid, para o RAPON, para o Rapid, para o RAPON, para o Rapid, para o RAPON ENGONETING para o RAPON e o Rapid de Ra. limites da fabricação. como um link entre o design e a produção. fdm, sla, sls e processos de impressão de metal , apoiando tudo, desde o desenvolvimento do protótipo até a produção de pequenos lotes e ajudando as inovações na terra. Em data-translateid = "05F03D86982B0842DD32B45BF5CCBBC2" Data-pos = "0" Data-Len = "221" Data-V-7b79c893 = ""> Span-V-7B79C893 = ""> fabricação digital de impressão 3D

"

Quais são os tipos de tecnologias de impressão 3D?

1.fused modelagem de deposição (fdm)

  • princípio: moldagem por deposição fundida, aquecendo a camada de fibra plástica por extrusão de camada.
  • Recursos: baixo custo, Adequado para o protótipo rápido , o processo de produção eficiente do JS otimize.

2.tereolitography (sla)

  • princípio: tecnologia de cura UV, a resina líquida é formada pela cura UV.
  • Recursos: alta precisão (± 0,05 mm), superfície lisa, adequada para estruturas complexas, atende aos requisitos de fabricação de precisão de JS.
Em data-pos = "0" data-len = "2" data-v-7b79c893 = ""> 3. data-len = "32" data-v-7b79c893 = ""> sinterização seletiva a laser (sls)

  • como funciona: pó de nylon sinterizado a laser não requer estrutura de suporte.
  • Recursos: Alta resistência, adequada para partes funcionais, a compatibilidade de material/composto de JS pode expandir sua faixa de aplicação.
Em Data-translateId = "E51290F157964015B5A180217E848F8C" DATA-POS = "0" DATA-LEN = "2" Data-V-7b79c893 = "> 4 Multi Jet Fusion (MJF)

  • como funciona: fusão de leito a jato de a jato de tinta, solidificando o pó de nylon por camada por meio de fusão e aquecimento infravermelho.
  • Features: High speed (3 times faster than SLS), high detail (±0.08mm), support for mass production of functional components, and the ability to adapt to JS Para produção rápida e otimização de custos.

5. data-pos = "2" data-len = "30" data-v-7b79c893 = ""> fusão seletiva a laser (slm)

  • como funciona: fusão a laser em pó de metal para fabricação de ponta.
  • Recursos: alta precisão (± 0,02 mm), alta resistência à temperatura, a tecnologia de usinagem de precisão da JS pode melhorar ainda mais a qualidade do produto.

Tipo de técnica velocidade custo tipo de material capacidade de processamento de complexidade vantagens associadas da empresa js fdm médio Low plásticos como PLA e Abs. ★★★ ☆ Velocidade de otimização do processo de produção eficiente. sla rápido (dlp) centro resina fotossensível. ★★★★ ☆ JS ± 0,005 mm de alta precisão de alta precisão. sls médio centro nylon, tpu e outros pós. ★★★★ ☆ suportando a expansão de aplicações de metal/composto. mjf extremamente rápido médio-alto nylon (PA12/PA11). ★★★★★ Melhoria da eficiência da produção em lote para entrega rápida. slm lento Tall metal em pó (titânio, aço inoxidável). ★★★★★ Tecnologia de usinagem de precisão garante alta complexidade das peças.

src = "https://jsrpm.com/webSite_img/i/2025/04/24/ssmkx6-2.jpg" alt = "tipos de tecnologias de impressão 3D" width = "900" Height = "600">

Qual é o efeito da espessura da camada de impressão FDM na força?

relacionamento entre a campanha e força

1. mais espessa a camada, quanto mais fraca a adesão intercalante

2. mais espessa a camada, a estrutura densa

  • menor espessura da camada, como 0,05 mm, reduz a lacuna entre as camadas, tornando a superfície mais suave e a estrutura interna mais uniforme.
  • js caso: Durante a impressão Serviço de peças aeroespaciais, JS controla a espessura da camada de impressão o nível do micrômetro para garantir que os componentes atendam aos padrões de força aeroespacial.

<

equilíbrio entre a espessura da camada e as propriedades do material

1. Camadas do chão salvar material, mas sacrificar força

  • Camadas grossas são impressas rapidamente e usam menos consumíveis, tornando -os adequados para prototipagem rápida, mas podem não ter força devido a defeitos entre camadas. Por exemplo, ao imprimir plástico ABS com uma espessura da camada de 0,3 mm, a resistência à tração pode ser 15% -20% menor que a de uma espessura da camada de 0,1 mm.
  • Otimização de custos: o serviço de impressão da JS usa algoritmos inteligentes para recomendando automaticamente a solução de espessura da camada mais econômica Ao garantir a força, economizando mais de 30% dos custos materiais.

2. camadas finas adicionam força, mas levam mais tempo para imprimir

  • A impressão de camada fina pode melhorar a força, mas o tempo de impressão é obviamente aumentado.
  • Tempo de serviço de impressão Garantido: O JS usa um cluster de impressora multi-gordura industrial; portanto, se você optar por camadas ultra-finas, você pode enviar dentro das prometidas 1-2 semanas.

seleção de espessura da camada em aplicações reais

1. Peças funcionais vs. Exibir peças

2. Adaptação da propriedade de material

  • PLA/ABS: A espessura da camada convencional é de 0,1-0,3 mm, e camadas finas podem melhorar o desempenho detalhado.
  • Recomenda-se os materiais de nylon/compósito: 0,05-0,15mm a espessura da camada é recomendada para melhorar a tenacidade.
  • Biblioteca de materiais de serviço de impressão: JS suporta a impressão de mais de 50 materiais, e cada material foi testado quanto à espessura da camada para garantir um desempenho ideal de força.

fdm de espessura da camada de impressão

Quais parâmetros determinam a resolução de impressão do SLA?

Span Data-V-7B79C893 = ""> CORETERS AFETAM Resolução

1. tipo de fonte de luz e tamanho de mancha

  • Fonte de luz do laser: o diâmetro do ponto é geralmente de 10 a 100 mícrons, adequado para jóias, odontologia e outros modelos li-li-cish = https://jsrpm.com/3d-printing "> href =" Href = "https://jsrpm.com/3d-printing"> li-li- li-cys.
  • Fonte de luz DLP: Uma mancha de luz é projetada através de um projetor digital e o tamanho do pixel determina a resolução (por exemplo, 50-100 mícrons para projeção 2K/4K).
  • impacto: quanto menor o tamanho da mancha, melhor os detalhes do eixo x/y, mas o tempo de impressão pode aumentar.
Em data-translateid = "6e82db129939d697ef96c0383f6a7c4a" data-pos = "0" data-len = "3" data-v-7b79c893 = "> 2. data-translateid="9c8d0c9d004d7eaa4d3d8db94a4466e7" data-pos="3" data-len="32" data-v-7b79c893="">Scanning speed and exposure time

  • Quanto mais lenta a velocidade de varredura, maior a energia de exposição por unidade de área, mais profunda a cura; Se a varredura for muito rápida, a cura pode estar incompleta.
  • direção de otimização: ajuste dinâmico da velocidade de varredura (por exemplo, redução da velocidade de varredura de detalhes) com base na complexidade do modelo.
Em data-translateid = "ffe4b3c216a21b0c77872d309cf51e13" data-pos = "0" data-len = "3" data-v-7b79c893 = "> 3. data-translateId = "7B77520B706CA48488BA88AC33DFB23B" Data-pos = "3" Data-Len = "35" Data-V-7B79C893 = ""> espessura da camada (Z-Z-AXI Resolução)

4 viscosidade: as resinas de baixa viscosidade têm boa fluidez, fácil de encher estruturas pequenas, mas a velocidade de cura precisa ser equilibrada.

  • Fotosensibilidade: as resinas de alta fotosensibilidade é sensível à luz e podem solidificar com baixa energia, reduzindo o risco de deformação térmica.

    5. data-translateid="4182065a6f414abb77c054c39fa7ebeb" data-pos="3" data-len="25" data-v-7b79c893="">Model geometry complexity

    • estruturas e orifícios salientes requerem ajustes adicionais de suporte ou estratégia em camadas, que podem ser às despesas da resolução local.
    • Método de otimização: a estrutura de suporte adaptativa é gerada pelo software de fatiamento de modelo.

    Comparação de parâmetros e tabela de sugestões de otimização

    parâmetros impacto na resolução direção de otimização valor típico tipo de fonte de luz laser> dlp (o laser tem maior precisão na mesma resolução). Escolha o laser para modelos de precisão e DLP para produção em massa. laser: 50μm / dlp: 100μm tamanho de ponto menor o local, mais claros os detalhes. Use cabeças a laser de alta precisão ou projeção 4K DLP. 50μm (laser) Scanning speed The slower the speed, the more complete the curing. Reduce speed in fine areas (e.g. 0.1mm/s) and speed up in large areas. 50-200mm/s Layer thickness The layer thickness is halved and the Z-axis resolution is increased by 4 times. Use thin layers (25μm) for precision parts and thick layers (100μm) for speed increase. 50μm (standard) Resin viscosity Low viscosity improves fluidity and detail filling ability. Use special resins (e.g. transparent resins with viscosity ≤1500cP). 500-2000cP Model overhang angle If the angle is too small, dense support is required, and blocking the light affects the curing. Avoid <45° overhangs or add auxiliary supports in the design. ≥60° (unsupported)

    By properly selecting parameter combinations, the 3D printing model can achieve precise manufacturing from concept verification to functional prototypes.

    Which printing technology is more stable in high temperature environments? ​

    1.3D printing of metallic materials (high temperature environment preferred)

    SLM/DMLS (selective laser melting/sintering)

    • Heat resistance: Materials such as titanium alloy (Ti6Al4V, melting point 1668°C) and nickel-based superalloys (Inconel 718, melting point 1390°C) can withstand high temperatures for longer than 600° C.
    • Stability: The laser melts the metal powder layer by layer, the tissue is compact, and the resistance to creep is strong.
    • 3D printing service support: Printing shops reduce residual stress and prevent thermal deformation by optimizing laser power, scanning speed and cooling strategies.

    2.Ceramic 3D printing technology (ultra-high temperature resistance potential)

    SLA/DLP (light-curing ceramics)

    • Heat resistance: Alumina (Al2O3, melting point 2050°C) and zirconium oxide (ZrO2, melting point 2700°C) ceramics can withstand temperatures above 1500°C.
    • Stability: Ceramic blanks require high temperature sintering (above 1600°C), density is close to theoretical values, and thermal expansion coefficient low.
    • 3D Printing Service Support: Printers provide a complete range of services from printing to degreasing and sintering to ensure that ceramic parts are fissure-free and size stable.

    3.High-Performance engineering plastic 3D Printing

    FDM (Molten deposition modeling)

    • Heat resistant materials: PEEK (melting point 343°C), ULTEM (melting point 335°C) and other special engineering plastics.
    • Stability: PEEK retains strength after prolonged use at 260°C, but printing temperature (280-320°C) and cooling conditions need to be optimized.
    • 3D printing service support: Printing shops use industrial-grade FDM equipment (such as Stratasys Fortus series) with thermostats to reduce warping.

    SLS (selective laser sintering)

    • Heat resistance: Nylon + fiberglass/carbon fiber composites with a short-term temperature resistance of up to 180°C.
    • Stability: Laser sintering is compact, but oxidizes easily at high temperature for a long time and requires surface coating protection.
    • 3D printing service support: Printing shops provide material modification services (such as adding flame retardants) to improve temperature resistance.
    • Advantages: Plastic 3D printing is low cost, short cycle time, suitable for medium and high temperature environments (e.g. automobile intake manifolds, electronic radiator, etc.).

    Technology selection recommendations for high temperature scenarios​​

    Scene temperature Recommended Technology Core advantages Key capabilities of printing shops
    600-1000℃ Metal SLM/DMLS. High strength and creep resistance. Laser equipment, vacuum environment, heat treatment.
    1000-1500℃ Ceramic SLA/DLP. Ultra high temperature resistance and corrosion resistance. Specialized ceramic materials and high-temperature sintering process.
    200-600℃ PEEK FDM, Nylon SLS. Economy and lightweight. Industrial grade equipment and material modification.

    Printing Technology in High Temperature Environments

    How to achieve layered stacking in 3D ink jet printing? ​

    Ink jet printing technology is by layering liquid material on top of each other to create three-dimensional objects. Its core lies in high high-precision jetting and curing control. Specific implementation steps and key technologies are as follows:

    1.Preparation of materials: Adaptation of liquid media

    • Photosensitive resin: The most commonly used material that requires fast curing and high viscosity stability.
    • Support material: Water-soluble or fusible material used to temporarily support complex structures.
    • Ink jet printing optimization: The injection accuracy of the nozzle (usually 20-100 microns in diameter, for example) needs to be adjusted by adjusting parameters such as viscosity of the material and surface tension.

    2.Ink jet print head: Precision droplet injection

    Piezoelectric drive or thermal foaming technology:

    • Piezoelectric ceramics: The piezoelectric ceramic deformed by voltage changes, and ink cavity are compressed to produce tiny droplets.
    • Thermal foaming: Local heating of ink to form bubbles, promote droplet spray.
    • Multi-nozzle collaboration: Industrial-grade inkjet print heads integrate hundreds of nozzles to achieve a single sweep over a large area.
    • Layered path planning: Software slices 3D models into 2D segments, and the inkjet head spray layers of material along the path.

    3.Layer by layer stacking: droplet solidification molding

    • Photocuring (UV/LED):
      • After each layer of liquid resin is sprayed, solidify with UV light or LED light immediately to form a solid thin layer.
      • Accurate control: Light intensity and exposure time need to be matched to the solidification characteristics of the material (e.g. SLA/DLP technology).

    4.Post-treatment: enhancement and surface optimization

    • Support structure removal: Dissolve or melt temporary support material.
    • Surface treatment: Grinding, sanding or chemical polishing to eliminate step effect.
    • Late-stage maintenance: Some materials require secondary curing to improve mechanical performance.

    Ink jet printing achieves layered stacking

    How to choose supporting materials for complex 3D printing models? ​

    1.Structural adaptation principle​

    Overhang structure (>45°):

    • PVA/HIPS: Soluble scaffold for water solubility or solvent removal.
    • Example: In 3D models printing of inclined bridges, PVA support can be removed by water solubility to prevent tool damage to detail.

    Bridge structure (long span):

    • ABS/nylon support rods: High temperature resistant to breakage during printing (such as robotic arm model).
    • For example, HIPS support can withstand high temperatures when printing grids in 3D models printing to prevent breakage during printing.

    2.Matching and separation of materials

    Easy peel combination:

    • PLA+PVA: Low adhesion, smooth finish.
    • Example: The 3D models printing transparent resin model matched the PVA support and dissolved in water without residue.

    Chemical dissolution combination:

    ABS+HIPS: Lemonin is needed to dissolve the scaffold and is suitable for complex internal parts such as gear components.

    3.Actual performance requirements

    • Heat Scenario: Ceramic/metal supports: high temperature resistant (e.g. titanium alloy printing) requiring mechanical peeling.
    • Shrinkage control: The material shrinkage rate of the supporting material is closer to that of the model material (e.g. PETG + PETG support).

    4.Post-treatment efficiency

    Quick removal:

    Environmental Protection Plan: It is advisable to select biodegradable scaffolds (e.g. PBDE-based biodegradable materials) to reduce waste liquid treatment costs.

    5.Printer adaptation

    FDM equipment:

    • Co-Supported: PLA/PVA/HIPS, optimize separation effect, optimized separation by adjusting nozzle temperature.
    • Example: 3D models printing hollow spheres with HIPS support, acetone vapor smooth surface.

    SLA/DLP equipment:

    • Supported by soluble resin, it was cured by ultraviolet light and then soaked and removed directly.
    • For example, when 3D models printing precision gears, resin supports retain microscopic detail.

    Can JS achieve functionally graded components through multi material 3D printing? ​

    1.Multi-material printing technology support

    JS's 3D printing services include MJF and composite metal/ceramic printing technologies, which can switch different materials (e.g. metal-ceramic, carbide-polymer) during the same printing process to achieve continuous or segmented gradient changes in material composition.

    2.Material compatibility and gradient design

    Through JS's 3D printing services, customers can choose from a variety of material combinations, including metals, ceramics and composites, and freely design the microstructure of functional gradient components (such as abrasionresistant + substrate layer).

    3.Process optimization and performance assurance

    JS's industrial-grade equipment supports thickness control (±0.005mm) and temperature management to ensure uniform interface bonding strength and gradient transition across different materials and meet extreme working conditions such as high temperature and pressure.

    4.Customized solutions

    For areas such as aerospace and medical devices, JS's team can provide a full range of services, from material selection and gradient structure design to reprocessing, such as:

    • Aerospace engine parts: Titanium alloy substrate gradient structure + ceramic thermal barrier coating.
    • Orthopedic implants: Metal skeleton biomimetic design + bioactive ceramic coating.

    Summary

    As a disruptive technology, 3dprinting continues to drive change in manufacturing with its diverse process types (e.g. FDM, SLA, metal printing, etc.) and a wide range of application scenarios (from industrial manufacturing to medical innovation). Whether it is the efficient production of complex functionally gradient parts or the rapid iteration of custom models, 3D printing services demonstrate irreplaceable flexibility and economy. Technology service providers represented by JS have further lowered the technology threshold by integrating multi-material printing, precision process control and industry-wide chain support, allowing businesses to focus on design innovation and value creation.

    Disclaimer

    The content on this page is for general reference only. JS Series makes no express or implied warranties regarding the accuracy, timeliness, or applicability of the information provided. Users should not assume that the product specifications, technical parameters, performance indicators, or quality commitments of third-party suppliers are completely consistent with the content displayed on this platform. The specific design feature, material standards, and process requirements of the product should be based on the actual order agreement. It is recommended that the purchaser proactively request a formal quotation and verify product details before the transaction. For further confirmation, please contact our customer service team for professional support.

    JS Team

    JS is an industry leading provider of customized manufacturing services, dedicated to providing customers with high-precision and high-efficiency one-stop manufacturing solutions. With over 20 years of industry experience, we have successfully provided professional CNC machining, sheet metal manufacturing, 3D printing, injection molding, metal stamping and other services to more than 5000 enterprises, covering multiple fields such as aerospace, medical, automotive, electronics, etc.

    We have a modern factory certified with ISO 9001:2015, equipped with over 100 advanced five axis machining centers to ensure that every product meets the highest quality standards. Our service network covers over 150 countries worldwide, providing 24-hour rapid response for both small-scale trial production and large-scale production, ensuring efficient progress of your project.

    Choosing JS Team means choosing manufacturing partners with excellent quality, precise delivery, and trustworthiness.
    For more information, please visit the official website: jsrpm.com

    FAQs

    1.Does SLS printing require support?

    SLS printing usually does not require support. The unsintered nylon powder will naturally envelop the model to avoid collapsing in the air. Only a few complex designs require a small amount of ancillary support, which greatly simplifies the reprocessing process.

    2.Which technology is suitable for printing transparent parts?

    SLA technology is suitable for printing transparent parts. It uses photosensitive resin that hardens under UV luz. The surface is smooth and transparent. Suitable for making high precision transparent model (such as optical parts).

    3.What does the layer thickness of FDM affect?

    The thickness of FDM layer influences surface smoothness, printing time and printing strength. The thicker the layer, the more visible the pattern, the faster the printing, but the intensity may be reduced.

    4.How big a part can 3D printing make?

    Industrial-grade 3D-printing devices can manufacture large parts of meters (such as aerospace parts), while desktop devices are usually limited to a few dozen centimeters and are suitable for small models or prototypes.

    Resources

    3D printing filament

    Stereolithography

    Selective laser sintering

  • blog avatar

    GloriaJS

    Prototipagem rápida e especialista em fabricação rápida

    Especialize -se em usinagem CNC, impressão 3D, fundição de uretano, ferramentas rápidas, moldagem por injeção, fundição de metal, chapa metal e extrusão.

    Marcação:

    • Impressão 3D
    Compartilhe em

    Criticism

    0 comments
      Click to expand more

      Featured Blogs

      empty image
      No data
      longsheng customer
      Contato